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METHODOLOGY

Evaluating habitat-specific interference 
in automated radio telemetry systems: 
implications for animal movement studies
Vinh T. Tran1, Andrew C. Vitz2 and Marja H. Bakermans1,3* 

Abstract 

Automated radio telemetry systems have become a popular and invaluable tool in tracking the activity and move-
ment of wild animals. However, many environmental conditions can hinder accuracy when tracking with this technol-
ogy. For instance, study sites may contain multiple habitat types, each habitat uniquely affecting the signal strength 
received from tagged species. To investigate the influence of a structurally diverse study site on an automated radio 
telemetry system, we conducted this project at a restored and managed pine barren habitat that consisted of a mix 
of mature pitch pine, treated pitch pine, scrub oak, and hardwood forests. This site, Montague Plains Wildlife Man-
agement Area, Montague, Massachusetts, is also a known breeding ground for Eastern whip-poor-will (Antrostomus 
vociferus). To measure the relationship of radio signal strength with distance across each habitat, we used radio telem-
etry equipment manufactured by Cellular Tracking Technologies. We produced negative exponential decay functions 
measuring radio signal strength over distance and tested for differences among habitat types on radio signal strength 
(RSS). We found that decay function parameters significantly differed by habitat type, prompting us to investigate 
if accounting for these differences improved location estimate accuracy. To test this, we estimated known locations 
using trilateration methods with and without habitat calibration. Comparing these tests indicates that habitat-spe-
cific adjustments significantly improved location accuracy. Lastly, we visualized estimated RSS-based locations of 1 
week of whip-poor-will data and compared them to GPS data generated from the same individual. Previous studies 
have accounted for types of environmental interference (like elevation) in the field but have avoided incorporating 
habitat-specific factors by working with node networks covering a relatively small area, but in this study, we examined 
the potential to scale up for larger areas and in more complex habitats.

Keywords Calibration, Eastern whip-poor-will, Localization error, Pitch pine, Radio signal strength, Scrub oak, 
Trilateration

Introduction
In recent decades, documenting animal movements 
through telemetry has become an increasingly popular 
method in studying animal ecology. With advancements 
in remote sensor technology, the accuracy of teleme-
try data and the scale of its application in research has 
greatly improved. By minimizing limitations in human 
labor and bias in field observations, automated telem-
etry can provide consistent, fine-scale animal loca-
tions, as well as other physiological and environmental 
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characteristics, such as heart rate and temperature [1–4]. 
Progressing from their initial use in the 1950s and 1960s, 
tracking devices have greatly improved in design, such as 
being more cost-effective, battery-efficient, lightweight, 
and smaller in size. With this development in technol-
ogy, previously difficult-to-track animals, both terrestrial 
and aquatic, have been made possible without impacting 
the survival of the tagged organism [5, 6]. Current auto-
mated tracking systems include the Argos and Motus 
networks, which utilize GPS and radio signaling, respec-
tively. Depending on the study, tracking tags used in 
either system can be adjusted in both the device’s signal 
frequency and battery capacity. However, the accuracy of 
transmitter locations, tracking duration, and geographic 
scope depends on the study organism, tracking technol-
ogy employed, and tracking device settings [1].

Both tracking systems allow for detecting long-distance 
movements of animals, but GPS devices are more accu-
rate and can provide data throughout the year, while 
Motus-based transmitters are generally smaller in size 
but signals are only detected in proximity to a Motus 
receiver (~ 15 km) [6, 7]. Studies that use different kinds 
of tracking technology are equally valid; however, these 
systems often fail to accurately capture smaller-scale 
movements of individuals, like when examining site-level 
foraging behavior [4]. Studies documenting this type of 
data previously utilized traditional handheld radio receiv-
ers, costing extensive amounts of time and human labor 
to document locations and location bias associated with 
human interference from field observations [2, 8]. How-
ever, installing multiple automated receivers in a smaller 
grid, spanning several hundred acres, allows for fine-
scale observation of the day-to-day behavior of a target 
species [9, 10].

In this study, we used the automated radio telemetry 
system (ARTS) equipment of Cellular Tracking Technol-
ogies (CTT). CTT systems function similarly to Motus 
systems, placing constantly active, solar-powered radio 
receivers, or “nodes”, across a study site to detect tagged 
animals as they move within the node network. Once 
deployed, CTT ARTS may provide ‘near GPS accuracy’ 
(e.g., ± 30  m) in optimal conditions [11]. Nodes in this 
system record the radio signal strength (RSS) values of 
any nearby tags within range and then transmit those 
data to a nearby central base station for upload to a vir-
tual database. Since RSS values alone provide no informa-
tion on a tag’s location, users must find the rate at which 
RSS changes depending on the distance of a tag [12–14]. 
By understanding this relationship, we are able to esti-
mate the distance of a tag from a node based on RSS 
readings. Following this, we can estimate the position of a 
tag through trilateration, which uses the approximate dis-
tances of a tag retrieved from three or more nodes [13].

Despite similar manufacturing methods for tags and 
nodes, each device retains a slightly different sensitivity 
when transmitting or receiving radio signals [15]. Indi-
vidual nodes in an ARTS may have varying sensitivities to 
reading radio tag signals. In addition to node deviation, 
radio signals produced by nodes interact with various 
complex environmental conditions that affect their prop-
agation. In the case of this study, natural barriers between 
a node and a tag may disrupt the radio signal between 
them, generating a margin of error for determining the 
distance between nodes and tags [6, 12, 13]. Many stud-
ies recognize the varying factors that can interfere with 
ARTS function in an outdoor setting, including radio 
receiver positioning and setup, temperature, vegetation, 
and humidity [12, 13, 16–18]. By adjusting for these vari-
ables, estimated location accuracy for tags has improved 
greatly for ARTS research. However, few studies address 
the issue of telemetry accuracy when dealing with mul-
tiple habitat types as opposed to one consistent habitat 
within a study area.

The goals of this study were to (1) evaluate the rela-
tionship of RSS in heterogeneous habitats, (2) estimate 
locations with trilateration using different models, (3) 
calculate localization error among models using known 
locations, (4) visualize the estimated locations, and (5) 
compare RSS-based locations to GPS data generated 
from the same individual. More specifically, we evaluated 
tag and node sensitivity and how heterogeneous habi-
tats influence the accuracy of RSS values when tracking 
birds with radio telemetry. We studied these questions 
in a managed scrub oak-pitch pine barren that has four 
major habitats: treated pitch pine, scrub oak, deciduous 
hardwood forest, and pitch pine forest [19, 20]. As doc-
umented in past studies, signal strength values should 
decay exponentially as the distance from nodes increases 
[13, 14]. Overall, we predict that areas with more struc-
turally complex vegetation, such as pitch pine or scrub 
oak, will hinder signal strength more than more open 
habitats, like treated pitch pine. Next, we implemented 
these relationships into a trilateration model with hab-
itat-specific parameters to estimate locations and cal-
culate localization errors with known coordinates. In 
addition to these tests, we used sample data from an 
Eastern whip-poor-will (Antrostomus vociferus) study to 
visualize the effects of habitat interference.

Methods
Study location
We conducted this study at the Montague Plains Wild-
life Management Area (WMA) in Massachusetts, USA 
(42.569° N, 72.534° W), a 280-hectare site managed by 
the Massachusetts Division of Fisheries and Wildlife 
(MADFW) [21]. As part of their Biodiversity Initiative 
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introduced in 1996, the MADFW utilizes mowing, 
timber harvesting, and prescribed fire treatments to 
restore the natural pitch pine-scrub oak community 
to the site [21]. The area hosts approximately 22 differ-
ent declining or rare plant and animal species, includ-
ing the brown thrasher (Toxostoma rufum), Eastern 
whip-poor-will, Eastern towhee (Pipilo erythrophthal-
mus), and prairie warbler (Setophaga discolor) [21]. 
Current habitats of the Montague Plains WMA consist 
of dense scrub oak stands, pitch pine forests, thinned 
pitch pine-scrub oak barrens, and mature hardwood 
forests (Fig.  1) [19, 20]. Pitch pine-scrub oak barrens 
reflect recent disturbance, featuring an open canopy of 
primarily pitch pine trees and a basal layer of ankle to 
waist-high shrubs of oak and birch species [20]. Scrub 
oak stands consist of overhead thickets of scrub oak 
and birch species, resulting from a harvested area left 
untreated for a longer period than a thinned pitch pine 
region [20]. Pitch pine and hardwood forests indicate 
untreated regions of Montague Plains WMA, with a 
relatively open understory and dense canopy [20].

Node network and equipment
For the radio telemetry system, we used Cellular Track-
ing Technologies (CTT) SensorStation™ (version 2.0), 
Nodes™ (Version 2.0 with GPS) and PowerTags™ (Gen-
eration III PowerTag Digitally Coded Radio Transmitter). 
The tags weigh about 1.5 g with an estimated battery life 
of 6 months and transmit a digitally coded UHF radio 
signal (434  MHz) every 45  s. Nodes were battery and 
solar powered, allowing for continuous function. We 
fixed nodes at the top of a 10-foot steel conduit tube 
(¾ inch) placed 2 feet in the ground. Within the study 
area, we placed 70 nodes in a grid spaced ~ 200 m apart 
across approximately 250 hectares (Fig. 2). Nodes trans-
mitted data to the SensorStation every hour, compiling 
and uploading over the cellular network to an online 
database.

Tag and node sensitivity and calibration
We measured the radio signal strength of the PowerTags 
used in the node calibration process. To assess tag sensi-
tivity, we calculated each tag’s average RSS and the mean 
and standard deviation (SD) of the entire dataset. Over 
a 7-min period using a CTT Locator™ placed 2 m from 

Fig. 1 Photos of scrub oak (top left), treated pitch pine (top right), pitch pine (bottom left), and hardwood forest (bottom right) present 
at Montague Plains WMA (42.569° N, 72.534° W), a managed pine barren. Scrub oak and treated pitch pine photos by Vinh Tran and pitch pine 
and hardwood forest photos used with permission from Amelia Sadlon
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individual PowerTags, we collected signal measurements 
[10].

Assessing each node in the network, we recorded 
radio signal strength using a 2-m tall pole with the Pow-
erTags attached at the top and facing separate direc-
tions. We placed the pole 2  m to the north from each 
node at the site and recorded signals over a 7-min period. 
Studies that have calibrated ARTS components (e.g., 
nodes) have used similar or shorter time intervals (e.g., 
range = 2–8  min); [10, 13, 14, 22]. We calculated node 
sensitivity by averaging the RSS values of each node and 
then calculated the mean and standard deviation for the 
entire dataset. For any tag or node within 1 SD of the 
mean, we did not adjust RSS readings [14]. For tags or 
nodes outside of 1 SD, we added a deviation adjustment 
(difference between values from the individual device and 
the standard deviation across all nodes) to RSS values 
from those tags or nodes prior to trilateration [14]. See 
Bircher et al. on methods of node calibration to account 
for sensitivity among nodes.

Habitat calibration
To measure habitat-specific RSS in our study site, we 
established transects from three randomly chosen 
nodes from each habitat type (Fig.  2). Transects con-
sisted of seven points at distances of 2, 5, 10, 20, 50, 75, 
and 100 m from the node, with the farthest point being 
half the distance between nodes, as employed by Pax-
ton et  al. We used two 50-m tape measures, a compass 

bearing to find the correct distances, and a randomly 
selected cardinal direction for transect point locations. 
We used the same tag pole for node calibration and col-
lected RSS values over 7-min intervals at each distance 
from the transect node [13, 14]. We recorded the GPS 
location of each transect point, placing the handheld 
GPS (Garmin GPSMAP™ 62sc) at the same location for 
7 min to allow for the device accuracy to adjust. We used 
readings from at least four additional nodes near transect 
points to increase the number of RSS values across addi-
tional distances within the same habitat. The “Generate 
Near Table” in ArcGIS Pro measured distances between 
surrounding nodes and transect points. We downloaded 
data from node memory cards rather than from the Sen-
sorStation network, as we found that foliage-dense habi-
tats interfered with uploading complete datasets to the 
SensorStation.

Negative exponential decay modeling
We described (1) the study system and (2) each habitat 
type’s relationship between RSS and distance using the 
negative exponential decay function formula:

where a is the intercept, K is the horizontal asymp-
tote, and S is the decay factor [13]. Of the 12 transects 
recorded, we randomly selected eight transects (i.e., two 
for each habitat type) and used their RSS values to gen-
erate negative exponential decay functions. We used RSS 

RSS = a ∗ exp(− S ∗ distance)+ K

Fig. 2 Map of the study site at Montague Plains WMA, a managed pine barren in western Massachusetts, USA. Equipment at the site includes 
nodes (black dots), a central data collection station (i.e., SensorStation; blue diamond), and transect points to collect habitat-specific RSS values (red 
dots)



Page 5 of 12Tran et al. Animal Biotelemetry           (2024) 12:12  

values from the other four transects to test the estimated 
location accuracy using these functions (i.e., localization 
error).

Location estimates and localization error
We modified previously established trilateration tech-
niques to implement our decay functions and generate 
location estimates [13]. To determine if our calibrations 
and habitat-specific decay functions increased trilat-
eration accuracy, we created several different localiza-
tion models using these adjustments. We developed 
three localization models: one using a single negative 
exponential decay function without considering habitat 
interference (null model), one with only the node cali-
bration adjustments (node model), and another using 
negative exponential decay functions of each habitat 
(habitat model). Using the habitat model as an example, it 
includes the decay function parameters for each habitat, 
switching between each function depending on a node’s 
location. Furthermore, for each model, we generated 
location estimates using RSS-based filters, selecting for 
RSS readings stronger than a specific signal strength [13]. 
One filter does not restrict any RSS values (− 110  dB), 
one filter limits values by the K value of the null function 
(− 102 dB), and one filter restricted by the highest K value 
of all decay functions (− 95  dB). Applying these restric-
tions examined whether models would reflect improved 
accuracy without substantial data loss by selecting for 
stronger signal readings [13]. To ensure that we used all 
available data, we collected RSS values from both the 
SensorStation and memory cards from each node.

To compare trilateration models, we calculated and 
compared localization error, the distance in meters 
between the coordinates of the known location and the 
estimated location. We used transect points not included 
in generating the negative exponential decay functions to 
estimate these localization errors.

Statistical analyses
Negative exponential decay modeling—We used a nonlin-
ear regression analysis to test for differences in negative 
exponential decay models between the null model and 
habitat model (nls() function) [23] using all RSS read-
ings from the habitat calibration. First, we fit a model 
that constrains the parameters (a, S, and K) to be the 
same regardless of the group (i.e., null model). Next, we 
fit another model that estimates separate parameters by 
group (i.e., habitat model) and then compared models 
with an F-test [23]. If statistically significant, we ran post-
hoc tests on each parameter by habitat with function 
pairComp() using the Holm method to adjust p-values 
for multiple comparisons (package aomisc) [24].

Localization error—We generated descriptive statis-
tics to examine the mean localization error by RSS fil-
ters, models, and the number of nodes used to estimate 
locations. We used two-way ANCOVA to test for differ-
ences in localization error by RSS filter (i.e., − 95, − 102, 
and − 110 dBs) and model (e.g., null, node, habitat) while 
controlling for the number of nodes used to estimate the 
location. The data adhered to assumptions of normality 
and homogeneity of variances, requiring no transforma-
tions. If the ANCOVA was statistically significant, we ran 
post-hoc tests to determine which groups differed with 
function emmeans() using the Holm method to adjust 
p-values for multiple comparisons (package emmeans) 
[25].

All statistical analyses were performed in R (ver. 4.2.1; 
[26]). Data and R code from this study are available in the 
Zenodo repository [27].

Sample application
We used 2022 data from a male whip-poor-will fitted 
with a CTT PowerTag to visually compare different RSS 
filters and models with the same dataset. Because we do 
not have a dataset of directly observed sightings for this 
individual, this visualization is to reflect any data loss, 
patterns, or changes in location estimates observed rather 
than to further test filter and model accuracy. To simplify 
the visualization, we only included RSS data from one 
individual taken from June 5th to June 11th, represent-
ing part of the prime breeding period for this species 
[28]. Using the post-hoc ANCOVA results, we used Arc-
GIS Pro to map whip-poor-will locations for models that 
significantly differed along with the simplest model (e.g., 
fewest adjustments) with significant differences.

In a pilot study examining breeding home ranges of 
whip-poor-wills, we placed a GPS data logger (PinPoint 
10, 1.2  g, Lotek Wireless) on this same individual male, 
collecting GPS-derived locations from 25 May to 29 June 
2020. We mapped these locations in Google Earth Pro to 
visualize habitat types used by this whip-poor-will and as 
a comparison to locations generated through this study, 
given that this male demonstrated site fidelity (i.e., the 
same banding location) across at least five breeding sea-
sons [29, 30].

Results
Tag and node sensitivity and calibration
We originally used four tags in the field for node cali-
bration; however, one tag malfunctioned during data 
collection and was not retained in this study. The three 
remaining tags had an average RSS of − 47.45  dB (3.74 
SD). Mean RSS for individual tags (i.e., − 46.57, − 47.85, 
and − 47.93 dBs) fell within 1 SD and, thus, did not 
require additional calibration.
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We measured 70 nodes in the 2022 field season 
across Montague Plains WMA, with an average RSS of 
− 45.8 dB (SD ± 4.3 dB) and recorded 15 nodes outside of 
1 SD (Fig. 3).

Habitat calibration and negative exponential decay 
models
Of the nodes deployed at Montague Plains WMA, we 
randomly selected 12 nodes for habitat transects, with 
eight used in calibration and four used in testing the esti-
mated locations. We plotted 275 averaged RSS values 
(total 5505 readings) from eight transects among habi-
tats, which produced a null exponential decay model of 
− 53.99*exp(− 0.0122 *distance)  − 101.82 (Table 1, Fig. 4). 
For the models of each habitat type, pitch pine resulted 
in − 60.12*exp(− 0.0126 *distance) − 103.98, hardwood 
forest was − 53.78*exp(− 0.0079*distance) − 107.91, 
treated pitch pine − 49.14*exp(− 0.0198*distance) − 95.29, 
and scrub oak − 58.61*exp(− 0.0110*distance) − 105.08 
(Table 1, Fig. 5).

The parameters of the habitat-specific models dif-
fered from the null model (F9,263 = 6.76, p < 0.001). Post-
hoc analyzes that account for multiple comparisons 
revealed that the hardwood habitat decay factor (S) dif-
fered from pitch pine (t = − 3.5, p = 0.003; Appendix 1) 
and a marginal difference between scrub oak and pitch 
pine (t = − 2.56, p = 0.052). The horizontal asymptote 
(K) for pitch pine differed from all other habitat types 
(hardwood: t = − 4.77, p < 0.001; scrub oak: t = − 5.69, 

p < 0.001; treated pitch pine: t = − 4.40, p < 0.001). Lastly, 
there was a significant difference in intercept between 
treated pitch pine and pitch pine (t = − 2.79, p = 0.032) 
and a marginal difference between scrub oak and pitch 
pine (t = − 2.45, p = 0.069).

Fig. 3 Histogram of radio signal strength (RSS, dB) corrections for 70 
nodes at a pine barren in western Massachusetts (USA). Any node 
in the zero bin was within 1 SD of the mean RSS readings and did 
not require a correction

Table 1 Parameters from negative exponential decay modeling

Beta estimates and standard errors (SE) for the parameters a (intercept), S 
(decay factor), and K (horizontal asymptote) in negative exponential decay 
modeling. The null model combined data from all habitats, and the habitat 
model estimated parameters by habitat type. Data were used to understand 
the relationship between receiver signal strength (RSS) and distance of a radio 
tag from a node and were collected in a managed pine barren in western 
Massachusetts (USA) in summer 2022

Habitat Parameter Coefficient SE

All habitats a 53.99 1.42

S 0.0122 0.0009

K − 101.82 0.82

Pitch pine a 60.12 2.60

S 0.0126 0.0019

K − 103.98 1.68

Hardwood a 53.78 0.32

S 0.0079 0.0014

K − 107.91 2.73

Treated pitch pine a 49.14 3.10

S 0.0198 0.0035

K − 95.29 0.99

Scrub oak a 58.61 2.06

S 0.0110 0.0010

K − 105.08 0.01

Fig. 4 A negative exponential decay model was generated 
from transect calibration points, with all habitat types combined (i.e., 
null model). Transects ran in a random cardinal direction from two 
randomly chosen nodes per habitat type at distances of 2, 5, 10, 
20, 50, 75, and 100 m from the node. Receiver signal strength (RSS) 
and distance of a radio tag from a node were collected in a managed 
pine barren in western Massachusetts (USA) in summer 2022
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Location estimates and localization error
Using four transects to test localization error, the mean 
distance was the smallest for the − 95 dB RSS filter and 
habitat model combination (46.1 m +−7.6 SE) and great-
est for the − 110 dB RSS filter and node model combina-
tion (79  m +/−10.5 SE; Table  2). However, the strictest 

RSS filter (i.e., − 95 dB RSS filter) resulted in a 75% loss of 
data, with a 100% loss within the closed canopy locations 
(i.e., hardwood and pitch pine forests). For the − 102 dB 
RSS filter, we lost 25% of the data, but the estimated 
measures of error were lower than the no filter (i.e., 
− 110 dB) results. The greater the number of nodes used 
in the analyses, the smaller the localization error, with the 
largest decrease in localization error occurring between 3 
and 5 nodes (Fig. 6). We excluded any location estimates 
containing only < 3 nodes (n = 16) from analyses.

Two-way ANCOVA analyses revealed a statistically 
significant difference in localization error by model 
(F2,148 = 6.2, p = 0.003) and filter (F2,148 = 12.8, p < 0.001), 
while their interaction is not significant (F4,148 = 0.6, 
p = 0.677). When applying the − 102  dB RSS filter, the 
habitat model differs from both node (padj = 0.025) and 
null (padj = 0.046) models (Fig.  7). There is marginal sig-
nificance between habitat and node (padj = 0.055) and 

Fig. 5 Negative exponential decay models for each habitat type, including hardwood forest (upper left), pitch pine (upper right), scrub oak (bottom 
left), and treated pitch pine (bottom right). Receiver signal strength (RSS) and distance of a radio tag from a node were collected in a managed pine 
barren in western Massachusetts (USA) in summer 2022

Table 2 Descriptive statistics of localization error

Descriptive statistics (mean, SE, and sample size) of the localization error 
(difference in meters between true and estimated locations) by RSS filter and 
model. Data were collected in a managed pine barren in western Massachusetts 
(USA) in summer 2022

RSS filter Habitat model Node model Null model

− 95 dB 46.1 (7.6 SE, n = 8) 46.3 (7.1 SE, n = 8) 49.5 (6.6 SE, n = 8)

− 102 dB 59.7 (8.2 SE, n = 20) 77.7 (10.0 SE, n = 23) 75.9 (10.0 SE, n = 23)

− 110 dB 65.3 (9.8 SE, n = 22) 79.0 (10.5 SE, n = 23) 77.3 (10.6 SE, n = 23)
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null (padj = 0.069) models with the − 110 dB filter (Fig. 7). 
None of the models differed with the − 95  dB filter (all 
padj = 1.000; Fig.  7). Post-hoc comparisons also revealed 
that the localization error for the node model at − 95 dB 
significantly differs from the errors with the − 102  dB 
(padj = 0.001) and − 110  dB filters (padj < 0.001, Fig.  7). 

Likewise, the localization error of the null model with the 
− 95  dB filter is significantly different than errors at the 
− 102  dB (padj = 0.004) and − 110  dB filters (padj = 0.003, 
Fig.  7). Localization error for the habitat model did not 
statistically differ among the filters (all padj > 0.129).

Sample application
Over a one-week period between 5 June 2022 and 11 
June 2022, we were able to estimate 6355 locations of a 
male whip-poor-will using the least restrictive filter and 
model (i.e., − 110 dB filter and null model). We mapped 
the results of four models (− 110 dB null, − 110 dB habi-
tat, − 102 habitat, and − 95 dB null; Fig. 8) based on the 
results of the post-hoc ANCOVA tests. Maps of loca-
tions indicated 73% data loss when comparing the least 
restrictive RSS filter (i.e., − 110 dB) to the most restrictive 
RSS filter (i.e., − 95 dB). When comparing maps created 
with null models while adjusting for habitat, we see that 
the habitat models retained locations in the vegetation-
dense habitats with both the − 102 and − 110 dB RSS fil-
ters. Clustering of locations is apparent in areas of pitch 
pine and treated pitch pine that coincides with locations 
documented for the same individual in a prior breeding 
season with GPS technology (Fig. 9).

Discussion
This study addresses a need for additional analyses of 
big data and bio-logging collection systems in the field 
under differing conditions [1, 4, 31]. Our results demon-
strate that the relationship between a radio transmitter’s 
detected signal strength and distance to a receiver can 
differ by habitat type. As expected, habitats with dense 
vegetation interfere with radio signals, causing the sig-
nal strength to weaken more rapidly over distance, with 
pitch pine forests demonstrating the greatest interfer-
ence. Knowing that habitat type can impact a radio trans-
mitter’s detected RSS value, it is important to account for 
different habitats to increase accuracy when estimating 
transmitter location.

Our reported values of localization error are within 
the ranges of those reported for studies with similar 
(~ 200 m) spacing among nodes [13, 22]. However, Pax-
ton et  al. [13] investigated further reducing localization 
errors by reducing node spacing and creating simulated 
grids with 100, 175, and 250-m spacings. Their study 
found that the closest spacing (100 m) led to the greatest 
significant decrease in localization error. Tilson [10] and 
Wallace et  al. [32] also document this effect using grids 
with node spacing of approximately 25 m and 10–74 m 
apart, respectively. Though these studies greatly reduced 
their localization errors, with Tilson [10] reporting 
13.2 m and Wallace et al. [32] reporting 7 m, it is impor-
tant to note their study sites were much smaller, covering 

Fig. 6 Localization error (the distance in meters 
between the coordinates of the known location and the estimated 
location) in relation to the number of nodes, RSS filter, and model 
used to generate the locations of known test points. Data 
were collected from 70 nodes placed in a grid (~ 200 m apart) 
in a managed pine barren in western Massachusetts (USA) in summer 
2022

Fig. 7 Estimated marginal means of the localization error in relation 
to RSS filters and models. Estimated marginal means represent 
the average of the localization error for each level of predictor 
variable (filter and model) and are used to assess the simple main 
effects of model and filter at different levels
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approximately 2.0 and 0.4 hectares, respectively. As with 
most animal tracking equipment, the tracking grid used 
in our study has limitations. While reducing node spac-
ing can reduce location error, this approach would be 
costly and time-consuming when covering a large area 
like our study site. Additionally, most animal movements 
outside of the established array of nodes go undetected, 
and locations estimates may be unreliable [22]. Also, our 
study was conducted at a single site, resulting in no repli-
cation at the site level.

When estimating locations, we found that across all 
models, a range of three to five nodes used for trilatera-
tion provided the greatest improvement in accuracy, with 
a slight decrease in error as more nodes were added. Til-
son [10] documented a continued decrease in error as 
the number of nodes increased (up to 16) in their study. 
Furthermore, when comparing the localization error of 

Fig. 8 Trilateration estimates of a male eastern whip-poor-will over a 7-day period (5–11 June 2022) at a managed pine barren in western 
Massachusetts (USA). Maps include point locations generated using − 110 dB RSS filter and null model (top left, n = 6355 points), − 110 dB RSS filter 
and habitat model (top right, n = 4139), − 95 dB RSS filter and null model (bottom left, n = 1742 points), and − 102 dB RSS filter and habitat model 
(bottom right, n = 3245 points)

Fig. 9 GPS data logger-derived locations (n = 70) from the same 
individual (BirdID = 71340) from 25 May to 29 June 2020, as displayed 
in Google Earth Pro
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our different models (i.e., node, habitat, and null) using 
known locations, the habitat model provided the best 
combination of improved accuracy while minimizing 
data loss. In addition, the node model failed to improve 
localization accuracy compared to the null model. Thus, 
we do not see a need for node calibration moving for-
ward with research on whip-poor-wills in this study area, 
and it may not be necessary for other studies.

Studies have documented artificial patterns when com-
paring estimated locations to known (or test) locations. 
Mostly, studies noted that estimated locations were 
pulled to the center of the node network [13, 22, 33]. Bil 
et  al. [9] found that estimated locations were cluttered 
at equal distances between nodes when implement-
ing a habitat-specific calibration curve. In our study, we 
noticed that points occasionally formed an empty circu-
lar pattern around nodes, suggesting that some points 
close to nodes could not be mapped correctly despite 
efforts to adjust and calibrate RSS readings. This pattern 
was most pronounced in our vegetation-dense pitch pine 
habitat. Similar to our study, Paxton et al. [13] found that 
RSS-based filters can minimize these artificial patterns.

However, implementing RSS filters that are too strict 
without accounting for habitat-specific decay will likely 
bias estimated locations. RSS filters that have been used 
in studies included − 88 dB [9], − 90 dB [10], − 95 dB [13], 
and − 100 dB [22]. The most stringent RSS filter used in 
our study (− 95  dB) provided significantly less localiza-
tion error in all models but greatly reduced the number of 
estimated locations. In fact, all locations in the hardwood 
forests and pitch pine forests were lost when employing 
the − 95  dB filter. Thus, using our most restrictive filter 
and not considering habitat would bias the interpreta-
tion of a species’ habitat use or selection because location 
estimates may be lost in areas where radio transmission 
is degraded. Alternatively, applying a filter slightly above 
the K values of our most dense habitat types provided 
an effective decrease in localization error with minimal 
data loss. Furthermore, at our study site, highly accurate 
GPS locations clearly illustrate that whip-poor-wills uti-
lize multiple habitat types, including pitch pine, indicat-
ing that trilateration calculations of this species should 
account for habitat type. For other studies focused on 
species that utilize multiple habitat types, we suggest 
accounting for this source of error while also applying 
limited RSS filtering when estimating locations using 
radio telemetry. Working in uniform or open habitats, 
like grasslands, may not require habitat calibration meas-
ures as applied in our study.

It is clearly established that field-based ARTS have 
various sources of interference besides those related to 
habitat type [8, 12, 34]. Therefore, consideration of each 
factor depends on the study subject and location, the 

time and resources available for calibration, and the level 
of precision desired. For instance, our study, like Tilson 
[10], did not consider the elevation change of an animal 
or of a node since the study site is nearly uniform in ele-
vation. For studies at a site with extensive topographic 
variation, the elevation change across the site may impact 
a telemetry system’s signal transmission and reception [8, 
22, 34]. Though it has been highlighted that many sources 
of location error are involved in using ARTS, these sys-
tems are highly versatile to the desired needs of research 
projects. Depending on the level of precision desired, the 
quantity, spacing, and elevation of nodes and the tag size 
and signal transmission rate can be modified to cater to 
research objective needs [13, 22, 33, 34].

Conclusion
Implementing an ARTS has greatly expanded the 
research opportunities on animals, particularly for those 
that are small and difficult-to-study species, like East-
ern whip-poor-will [28]. Radio telemetry technology has 
been used to study whip-poor-will to better understand 
home range size, habitat use, and territorial movements 
[35–40], but an automated approach that can collect data 
at any time of the day or night should provide a better 
understanding of their movement patterns and ecology. 
The next steps for this project on Eastern whip-poor-will 
breeding ecology include using calibration measures to 
estimate the locations of birds on the breeding grounds, 
generating home ranges, and examining habitat use and 
movements in relation to habitat management (e.g., pre-
scribed burns and mechanical treatments). Although, 
the setup and calibration of such networks are time-con-
suming and strenuous, especially if habitats are difficult 
to traverse. When calibrating the system, several sources 
of error may add additional challenges, such as malfunc-
tioning tags, nodes, or memory cards (e.g., corrupt files), 
and these limitations were present in our study. Despite 
these obstacles, accounting for calibration in varying 
habitats should improve the capability and information 
provided by automated radio telemetry systems in future 
studies.

Appendix
Pairwise comparisons of parameters from negative expo-
nential decay models by habitat. Parameters include 
intercept (a), decay factor (S), and horizontal asymptote 
(K). Habitat groups are indicated by the numbers in the 
table and include hardwoods (1), treated pitch pine (2), 
scrub oak (3), and pitch pine (4). We ran post-hoc tests 
on each parameter by habitat with function pairComp() 
using the Holm method to adjust p-values for multiple 
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comparisons (package aomisc; Onofri 2020). Pairs that 
are significantly different are indicated with bold font.

Parameter and 
Pair

Estimate SE t value Pr( >|t|)

a1-a2 − 6.338 3.938 − 1.610 0.430

a1-a3 − 4.836 3.841 − 1.259 0.624

a1-a4 − 4.638 4.066 − 1.141 0.324

a2-a3 − 1.503 3.709 − 0.405 0.685

a2-a4 − 10.977 3.941 − 2.785 0.032
a3-a4 − 9.474 3.845 − 2.464 0.069

S1-S2 − 0.005 0.002 − 2.124 0.135

S1-S3 − 0.003 0.002 − 1.808 0.164

S1-S4 − 0.012 0.003 − 3.510 0.002
S2-S3 − 0.002 0.002 − 0.713 0.476

S2-S4 − 0.007 0.004 − 1.923 0.164

S3-S4 − 0.009 0.003 − 2.559 0.052

K1-K2 − 3.923 3.032 − 1.294 0.587

K1-K3 − 2.827 2.873 − 0.984 0.650

K1-K4 − 12.617 2.645 − 4.769 < 0.000
K2-K3 − 1.069 2.270 − 0.483 0.650

K2-K4 − 8.694 1.975 − 5.694 < 0.000
K3-K4 − 9.790 1.719 − 5.694 < 0.000
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